Metropolis Sampling

Matt Pharr
cs348b

May 20, 2003

Introduction

e Unbiased MC method for sampling from
functions’ distributions

e Robustness in the face of difficult problems

e Application to a wide variety of problems

e Flexibility in choosing how to sample

e Introduced to CG by Veach and Guibas

(a) Bidirectional path tracing with 40 samples per pixel.

Image credit: Eric Veach

(b) Metropolis light transport with an average of 250 mutations per pixel [the same
computation time as (a)].

Image credit: Eric Veach

(a) Path tracing with 210 samples per pixel.

Image credit: Eric Veach

g v

v__\ y
. il M
-y . -

» : &
s Z * t‘r;. a
R A S

| 4

(b) Metropolis light transport with an average of 100 mutations per pixel [the
same computation time as (a)].

Image credit: Eric Veach

Overview

e For arbitrary f(x) = R, x € ()

Overview

e For arbltrary f(x) = R, x €
o Define I(f) = [, f(z)dQ so foar = [/I(f)

Overview

e For arbitrary flz) =R, z €

o Define I(f) = [, f(z)dQ2 so foar = f/I(f)
o Generates samples X {z:}, i ~ foar

e Without needing to compute fpq¢ or I(f)

Overview

e Introduction to Metropolis sampling

e Examples with 1D problems

e Extension to 3D, motion blur

e Overview of Metropolis Light Transport

Basic Algorithm

e Function f(x) over state space §2, f:{) — R.
e Markov Chain: new sample z; using x;_;

Basic Algorithm

e Function f(x) over state space §2, f:{) — R.

e Markov Chain: new sample z; using x;_;

e New samples from mutation to x;_; — x’

e Mutation accepted or rejected so x; ~ fpar

o If rejected, x; = 2,1

e Acceptance guarantees distribution of x; is the
stationary distribution

Pseudo-code

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
if (random() < a)
X = x’
record(x)

Expected Values

e Metropolis avoids parts of {2 where f(x) is
small

e But e.g. dim parts of an image need samples

e Record samples at both z and

e Samples are weighted based on a(z — z’)

e Same result in the limit

Expected Values — Pseudo-code

x = x0
for 1 =1 ton
x’ = mutate(x)
a = accept(x, x’)
record(x, (1-a) * weight)
record(x’, a * weight)
if (random() < a)
X = X’

Mutations, Transitions, Acceptance

e Mutations propose x’ given x;

e T(x — x') is probability density of proposing
x' from x

e a(x — x’) probability of accepting the
transition

Detailed Balance — The Key

e By defining a(x — ') carefully, can ensure

f(@) Tz — 2) a(z — 2') =
f(2)T(2' — z)a(z’ — x)

e Since f and 1’ are given, gives conditions on
acceptance probability
e (Will not show derivation here)

Acceptance Probability

e Efficient choice:

a(z — &) = min (1, fv((i)) JTE;: : ;)))

Acceptance Probability — Goals

e Doesn't affect unbiasedness; just variance

e Maximize the acceptance probability —
— Explore state space better
— Reduce correlation (image artifacts...)

e \Want transitions that are likely to be accepted
— i.e. transitions that head where f(x) is large

Mutations: Metropolis

e I(a—b)=T(0b— a)forall a, b

a(z — 2') = min (1, J;((Z/)))

e Random walk Metropolis

Tx — 2')=T(|lx — 2'|)

Mutations: Independence Sampler

e If we have some pdf p, can sample = ~ p,
e Straightforward transition function:

T(x — 2') = p(x)

o If p(x) = fyar, wouldn't need Metropolis
e But can use pdfs to approximate parts of f...

Mutation Strategies: General

e Adaptive methods: vary transition based on
experience

e Flexibility: base on value of f(x), etc. pretty
freely

e Remember: just need to be able to compute
transition densities for the mutation

e [he more mutations, the merrier

e Relative frequency of them not so important

1D Example

e Consider the function

f1(x):{(:17—.5)2 . 0<z<1

0 : otherwise

e Want to generate samples from f!(x)

1D Mutation #1

mutate; () — &
Ti(x —2) = 1

e Simplest mutation possible
e Random walk Metropolis

1D Mutation #2

mutates(x) — x+.1x% (£ —.5)

1 /
N o_ Jar ¢ le—a<.05
Lz — o) { 0 otherwise

e Also random walk Metropolis

1D Mutation #2

e mutatey increases acceptance probability

a(z — 2') = min (1» J;v((i)) ;Féj : ;))>

e When f(x) is large, will avoid ' when

f(@') < f(z)
e Should try to avoid proposing mutations to
such 2/

1D Results - pdf graphs

o Left: mutate; only
e Right: a mix of the two (10%/90%)
e 10,000 mutations total

Why bother with mutate;, then?

e If we just use the second mutation (£.05)...

Ergodicity

e Need finite prob. of sampling x, f(z) > 0
e This is true with mutates, but is inefficient:

e Still unbiased in the limit...

Ergodicity — Easy Solution

e Periodically pick an entirely new x
e e.g. sample uniformly over €2...

Application to Integration

e Given integral, [f(z)g(z)dS
e Standard Monte Carlo estimator:

1 flz)gla)

e where x; ~ p(x), an arbitrary pdf

Application to Integration

N

/ﬂf(w)g(x) 40 ~ %Z f(xi)g(x;)

1 p(xi)

Application to Integration

o1 . f(x)g(a)
[s@a@rao~ >
e Metropolis gives x1,...,xN, ©; ~ fpar(x)

[s@ag@ a0~ |53 gt 1)

o (Recall I(f) = [, f(x)d2)

Start-Up Bias

* X; converges to T, but never actually reaches
it

e Especially in early iterations, the distribution
of X; can be quite different from f,

e This problem is called the Start-Up Bias

Eliminating Start-Up Bias

e Start from any X,, make a couple of “dummy”
iterations without recording the results

— How many “dummy” iterations?

— X; only proportional to fpdf for i->infty anyway

— Not a good solution

Eliminating Start-Up Bias

* Generate X,, proportional to any suitable pdf
p(x)
* Weight all contributions by w = (X)) / p(X,)

— Unbiased on average (over many runs)

— Each run may be completely “off”
(even black image, if f(X,) was zero)

— Not a good solution

Eliminating Start-Up Bias

Generate n initial samples X;,..., %y,
proportional to any suitable pdf p(X)

Compute weights W, = 1(X,;) / p(X;)
Pick initial state proportional to w.

Weight all contributions by 1
W==—>) W
)
e Note that ~ _
13 (%)

E[w] = E| = = j f (X)dx

Motion Blur

e Onward to a 3D problem

e Scene radiance function L(u,v,t) (e.g.
evaluated with ray tracing)

e [, = 0 outside the image boundary

e Qs (u,v,t) € |0, Umax| X [0, Vinax] X [0, 1]

Image Contribution Function

e The key to applying Metro to image synthesis
I, = / hi(u,v) L(u,v,t)dudvdt
Q

e [; is value of j'th pixel
e /1 is pixel reconstruction filter

Image Contribution Function

e So if we sample z; ~ Lg¢

N

I~ %Z hiz:) - (/QL(:E) dQ) |

1=1

e [he distribution of x; on the image plane

forms the image
e Estimate [, L(x)df2 with standard MC

Two Basic Mutations

e Pick completely new (u,v,t) value
e Perturb u and v £8 pixels, time 4.01.
e Both are symmetric, Random-walk Metropolis

Motion Blur — Result

e Left: Distribution RT, stratified sampling
e Right: Metropolis sampling
e Same total number of samples

otion Blur — Parameter Studies

o Left: 80 pixels, .5 time. Many rejections.
e Right: 0.5 pixels, £.001 time. Didn't
explore €2 well.

Exponential Distribution

e Vary the scale of proposed mutations
= Tpax e—IOg(TmaX/TminK, H = 27-‘-6

(du,dv) = (rsinf, r cos8)
dt = tmaX e—IOg(tmaX/ tmin)§

e Will reject when too big, still try wide variety

Exponential distribution results

Light Transport

e Image contribution function was key
e f(x) over infinite space of paths

e State-space is
scene—from lig
e Robustness is
transport prob

light-carrying paths through the
nt source to sensor
particularly nice—solve difficult

ems efficiently

e Few specialized parameters to set

Light Transport — Setting

e Samples x from () are sequences vyv; . . . vy,
k > 1, of vertices on scene surfaces

x1

AN 303
X2

e f(x) is the product of emitted light, BRDF
values, cosines, etc.

Light Transport — Strategy

e Explore the infinite-dimensional path space
e Metropolis's natural focus on areas of high
contribution makes it efficient
e New issues:
— Stratifying over pixels
— Perceptual issues
— Spectral issues
— Direct lighting

Z sampling state (light path)
M LT PS e u d O CO d e 1(2) “scalar contribution function”

(i.e target function for Metropolis

mutations, was f(z) earlier
Generate path seeds (2))

Approximate b = [I(z) dz from the seeds
Find z; from the seeds using /(z)

for;=1to M do

Based on z;, sample a tentative point z using 7'(z; — z;)
lz) Tz —>z;) 4
I(z;) T(zi—z)’

Select pixel j to which z contributes
@ += L2 . LEl (1 _q(z; 7))

F(z) integrand (was h(2)f(z) earlier)

a(zi — #;) = mjn{

H . I(Z?\J .
Select pixel £ to which z contributes
_ b F(z)
(I)k += 7 I(z;) . a(z,- — Zf)

/I accept with probability a(z — ;)
Generate random number » in [0, 1].
if r<a(z, — z;) then z;. | = z;
else Zii1 =1
endfor

Bidirectional Mutation

e Delete a subpath from the current path
e Generate a new one
e Connect things with shadow rays

4 4

v6 /v6 v5'
5 [
V5 \4 v4
v4 vl vl vl
vO v0 v3'4 v0
\NV/ \Nb/ \‘ [{

N7
Natd N et Neatd
v3 zQ% ng zﬁb

v2 v2

e If occluded, then just reject

Bidirectional Mutation

e Very flexible path re-use

e Ensures ergodicity—may discard the entire path

e Inefficient when a very small part of path
space Is Important

e [ransition densities are tricky: need to
consider all possible ways of sampling the path

Caustic Perturbation

e Caustic path: one more more specular surface
hits before diffuse, eye

N\
N -~
- ~
v’ /f ‘\
. "
[I
[y 0
[f)

non-specular
specular

e Slightly shift outgoing direction from light
source, regenerate path

Lens Perturbation

e Similarly perturb outgoing ray from camera
o Keeps image samples from clumping together

Why It Works Weli

e Path Reuse
— Efficiency—paths are built from pieces of old
ones
— (Could be used in stuff like path tracing...)
e | ocal Exploration
— Given important path, incrementally sample
close to it in (2
— When f is small over much of €2, this is
extra helpful

MLT in Primary Sample Space

e [Kelement et al. 2002]

e Light path is uniquely determined by the
random numbers used to generate it.

window

- '_,,--"'inutated

: pathS

[Hl MZIS]

— primary sample space

MLT in Primary Sample Space

e Formulate MLT as an integration problem in
the space of uniformly distributed random
numbers (the “primary space”)

* New integrand:

dS(u)
du

F* (u) = F(S(u)) |

e New scalar contrib. function:

MLT in Primary Sample Space

Mutations in primary space
Small steps

— Perturb all the u/s using exponential distribution

Large steps

— Regenerate path from scratch

Ergodicity, symmetry (no need to evaluate T)

(a) Bidirectional path tracing with 40 samples per pixel.

Image credit: Eric Veach

(b) Metropolis light transport with an average of 250 mutations per pixel [the same
computation time as (a)].

Image credit: Eric Veach

(a) Path tracing with 210 samples per pixel.

Image credit: Eric Veach

g v

v__\ y
. il M
-y . -

» : &
s Z * t‘r;. a
R A S

| 4

(b) Metropolis light transport with an average of 100 mutations per pixel [the
same computation time as (a)].

Image credit: Eric Veach

(b)

Figure 6: These images show caustics formed by a spotlight
shining on a glass egg. Column (a) was computed with bidi-
rectional path tracing using 25 samples per pixel, while (b)
uses Metropolis light transport with the same number of ray
queries (varying between 120 and 200 mutations per pixel).
The solutions include all paths of up to length 7, and the
images are 200 by 200 pixels.

Progressive photon mapping BDPT MLT PM PPM

Figure 6: A box scene illuminated by a lighting fixture. The lighting fixture is behind glass and the illumination in the scene is dominated
by caustics. The specular reflections and refractions have significant noise even with Metropolis light transport. Standard photon mapping
cannot resolve the sharp illumination details in the scene with the maximum 20 million photons in the photon map. With progressive photon
mapping we could use 213 million photons, which resolves all the details in the scene and provides a noise free image in the same rendering
time as the Monte Carlo ray tracing methods.

PT BDPT MLT PPM Reference

Figure 7: Torus embedded in a glass cube. The reference image on the far right have been rendered using path tracing with 51500 samples

per pixel. The Monte Carlo ray tracing methods fail to capture the lighting within the glass cube, while progressive photon mapping provides
a smooth result using the same rendering time.

Image credit: Toshiya Hachisuka

Progressive photon mapping BDPT

Figure 8: Lighting simulation in a bathroom. The scene is illuminated by a small lighting fixture consisting of a light source embedded in
glass. The illumination in the mirror cannot be resolved using Monte Carlo ray tracing. Photon mapping with 20 million photons results in
a noisy and blurry image, while progressive photon mapping is able to resolve the details in the mirror and in the illumination without noise.

Image credit: Toshiya Hachisuka

Other applications of Metropolis
sampling in Rendering

e Segovia et al. 2007
Metropolis Instant Radiosity

e Ghosh & Heidrich 2006
Metropolis sampling of environment maps

e Metropolis photon sampling
— Fan et al. 2005
— Hachisuka and Jensen 2011

Fan et al. 2005

Hachisuka and Jensen 2011

e Simplifying trick:
Target function is the binary photon visibility V(x)

/'/ A ‘I N \

V(u) in the hypercube Light Paths

Fig. 2. Sampling space of our method. We define a function V (x) in the
hypercube of random numbers. The function returns 1 if a corresponding
photon path contributes to the image (the green point in the shaded region)
and O otherwise (the red point outside the shaded region).

Hachisuka and Jensen 2011

e Other important trick: Adaptive mutation size

— Adapt mutation size to the number of accepted
mutations

Fig. 7. The effect of adaptive mutation size. A pocket watch is illuminated by a hemispherical light source and a directional light source and is
rendered with depth-of-field. Illumination on the dial-plate is due to caustics from the glass cover and the metal lid. The images shown are
rendered by uniform random sampling (the leftmost image) and our photon tracing method (right three images) in the same rendering time.
The second image uses mutation size that is too small (¢; = 0.01) and the fourth image uses mutation size that is too large (d; = 4.0). The
adaptive Markov chain Monte Carlo method used in our method (the third image) produces the least noisy result without any parameter tuning.

Hachisuka and Jensen 2011

[N

Fig. 1. Cognac glass illuminated by a directional light source. The figure compares rendered images using progressive photon mapping with the
same rendering time (120 min), but with different photon tracing algorithms. The images on the top row are rendered using random sampling
of photons, which become increasingly noisy as we zoom into the caustic. Using our photon tracing method (bottom row), we can focus tracing
photon paths into the region that contributes to the image without any portal, and render the close-ups with less noise in the same rendering
time. Note that no other existing global illumination methods can render illumination under the cognac glass accurately, since this illumination
comes from specular-diffuse-specular paths from a light source with zero solid angle. The combination of progressive photon mapping and our
photon tracing technique is the first method that works effectively and robusily in this kind of scene. The siripe patterns in the caustic are not
artifacts of our method - they are caused by the tessellation of the cognac glass.

Hachisuka and Jensen 2011

Fig. 5. Sequences of rendered images of a room (with permission of Youichi Kimura) illuminated by a directional light source . The top row
shows the results with uniform sampling and the bottom row shows the results with our method using the same rendering time (1, 15, 30, and
60 min from left to right). Our photon tracing method robustly and automatically handles scenes that are considered difficult to render with
existing photon tracing approaches. The illumination is coming through the glass window and only photon tracing approaches can handle such
paths without ignoring specular reflections and refractions at the window.

Conclusion

e A very different way of thinking about
Integration

e Robustness is highly attractive

e Implementation can be tricky

	02-stgi-metropolis - images.pdf
	MLT Examples
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Start-Up Bias
	Eliminating Start-Up Bias
	Eliminating Start-Up Bias
	Eliminating Start-Up Bias

	02-stgi-metropolis - additional.pdf
	MLT Examples
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Start-Up Bias
	Eliminating Start-Up Bias
	Eliminating Start-Up Bias
	Eliminating Start-Up Bias
	MLT Pseudocode
	MLT in Primary Sample Space
	MLT in Primary Sample Space
	MLT in Primary Sample Space
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Other applications of Metropolis sampling in Rendering
	Fan et al. 2005
	Hachisuka and Jensen 2011
	Hachisuka and Jensen 2011
	Hachisuka and Jensen 2011
	Hachisuka and Jensen 2011

