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Introduction

• Unbiased MC method for sampling from

functions’ distributions

• Robustness in the face of difficult problems

• Application to a wide variety of problems

• Flexibility in choosing how to sample

• Introduced to CG by Veach and Guibas



(a) Bidirectional path tracing with 40 samples per pixel.

Image credit: Eric Veach



(b) Metropolis light transport with an average of 250 mutations per pixel [the same 
computation time as (a)].

Image credit: Eric Veach



(a) Path tracing with 210 samples per pixel.

Image credit: Eric Veach



(b) Metropolis light transport with an average of 100 mutations per pixel [the 
same computation time as (a)].

Image credit: Eric Veach
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Overview

• For arbitrary f(x)→ R, x ∈ Ω
• Define I(f) =

∫
Ω f(x)dΩ so fpdf = f/I(f)

• Generates samples X = {xi}, xi ∼ fpdf

• Without needing to compute fpdf or I(f)



Overview

• Introduction to Metropolis sampling

• Examples with 1D problems

• Extension to 3D, motion blur

• Overview of Metropolis Light Transport
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Basic Algorithm

• Function f(x) over state space Ω, f :Ω→ R.

• Markov Chain: new sample xi using xi−1

• New samples from mutation to xi−1→ x′

• Mutation accepted or rejected so xi ∼ fpdf

• If rejected, xi = xi−1

• Acceptance guarantees distribution of xi is the

stationary distribution



Pseudo-code

x = x0
for i = 1 to n

x’ = mutate(x)
a = accept(x, x’)
if (random() < a)

x = x’
record(x)



Expected Values

• Metropolis avoids parts of Ω where f(x) is

small

• But e.g. dim parts of an image need samples

• Record samples at both x and x′

• Samples are weighted based on a(x→ x′)
• Same result in the limit



Expected Values – Pseudo-code

x = x0
for i = 1 to n

x’ = mutate(x)
a = accept(x, x’)
record(x, (1-a) * weight)
record(x’, a * weight)
if (random() < a)

x = x’



Mutations, Transitions, Acceptance

• Mutations propose x′ given xi
• T(x→ x′) is probability density of proposing

x′ from x

• a(x→ x′) probability of accepting the

transition



Detailed Balance – The Key

• By defining a(x→ x′) carefully, can ensure

xi ∼ f(x)

f(x)T(x→ x′) a(x→ x′) =

f(x′)T(x′→ x) a(x′→ x)

• Since f and T are given, gives conditions on

acceptance probability

• (Will not show derivation here)



Acceptance Probability

• Efficient choice:

a(x→ x′) = min
(

1,
f(x′)T(x′→ x)
f(x)T(x→ x′)

)



Acceptance Probability – Goals

• Doesn’t affect unbiasedness; just variance

• Maximize the acceptance probability →
– Explore state space better

– Reduce correlation (image artifacts...)

• Want transitions that are likely to be accepted

– i.e. transitions that head where f(x) is large



Mutations: Metropolis

• T(a→ b) = T(b→ a) for all a, b

a(x→ x′) = min
(

1,
f(x′)
f(x)

)
• Random walk Metropolis

T(x→ x′) = T (|x− x′|)



Mutations: Independence Sampler

• If we have some pdf p, can sample x ∼ p,

• Straightforward transition function:

T(x→ x′) = p(x′)

• If p(x) = fpdf, wouldn’t need Metropolis

• But can use pdfs to approximate parts of f ...



Mutation Strategies: General

• Adaptive methods: vary transition based on

experience

• Flexibility: base on value of f(x), etc. pretty

freely

• Remember: just need to be able to compute

transition densities for the mutation

• The more mutations, the merrier

• Relative frequency of them not so important



1D Example

• Consider the function

f 1(x) =
{

(x− .5)2 : 0 ≤ x ≤ 1
0 : otherwise

• Want to generate samples from f 1(x)



1D Mutation #1

mutate1(x) → ξ

T1(x→ x′) = 1

• Simplest mutation possible

• Random walk Metropolis



1D Mutation #2

mutate2(x) → x+ .1 ∗ (ξ − .5)

T2(x→ x′) =
{ 1

0.1 : |x− x′| ≤ .05
0 : otherwise

• Also random walk Metropolis



1D Mutation #2

• mutate2 increases acceptance probability

a(x→ x′) = min
(

1,
f(x′)T(x′→ x)
f(x)T(x→ x′)

)
• When f(x) is large, will avoid x′ when

f(x′) < f(x)
• Should try to avoid proposing mutations to

such x′



1D Results - pdf graphs
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• Left: mutate1 only

• Right: a mix of the two (10%/90%)

• 10,000 mutations total



Why bother with mutate1, then?

• If we just use the second mutation (±.05)...

0.00 0.25 0.50 0.75 1.00
x

0.0

0.2

0.4

0.6

0.8



Ergodicity

• Need finite prob. of sampling x, f(x) > 0
• This is true with mutate2, but is inefficient:
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• Still unbiased in the limit...



Ergodicity – Easy Solution

• Periodically pick an entirely new x

• e.g. sample uniformly over Ω...



Application to Integration

• Given integral,
∫
f(x)g(x)dΩ

• Standard Monte Carlo estimator:∫
Ω
f(x)g(x) dΩ ≈ 1

N

N∑
i=1

f(xi)g(xi)
p(xi)

• where xi ∼ p(x), an arbitrary pdf
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Application to Integration

∫
Ω
f(x)g(x) dΩ ≈ 1

N

N∑
i=1

f(xi)g(xi)
p(xi)

• Metropolis gives x1, . . . , xN , xi ∼ fpdf(x)∫
Ω
f(x)g(x) dΩ ≈

[
1
N

N∑
i=1

g(xi)

]
· I(f)

• (Recall I(f) =
∫

Ω f(x)dΩ)



Start-Up Bias

• xi converges to fpdf, but never actually reaches 
it

• Especially in early iterations, the distribution 
of xi can be quite different from fpdf

• This problem is called the Start-Up Bias



Eliminating Start-Up Bias

• Start from any x0, make a couple of “dummy” 
iterations without recording the results

– How many “dummy” iterations?
– xi only proportional to fpdf for  i -> infty anyway

– Not a good solution



Eliminating Start-Up Bias

• Generate x0, proportional to any suitable pdf
p(x)

• Weight all contributions by w = f(x0) / p(x0)

– Unbiased on average (over many runs)
– Each run may be completely “off” 

(even black image, if f(x0) was zero)

– Not a good solution



Eliminating Start-Up Bias

• Generate n initial samples 
proportional to any suitable pdf p(x)

• Compute weights wi = f(x0,i) / p(x0,i)
• Pick initial state proportional to wi

• Weight all contributions by

• Note that 
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Motion Blur

• Onward to a 3D problem

• Scene radiance function L(u, v, t) (e.g.

evaluated with ray tracing)

• L = 0 outside the image boundary

• Ω is (u, v, t) ∈ [0,umax]× [0, vmax]× [0, 1]



Image Contribution Function

• The key to applying Metro to image synthesis

Ij =
∫

Ω
hj(u, v)L(u, v, t) du dv dt

• Ij is value of j’th pixel

• hj is pixel reconstruction filter



Image Contribution Function

• So if we sample xi ∼ Lpdf

Ij ≈
1
N

N∑
i=1

hj(xi) ·
(∫

Ω
L(x) dΩ

)
,

• The distribution of xi on the image plane

forms the image

• Estimate
∫

ΩL(x) dΩ with standard MC



Two Basic Mutations

• Pick completely new (u, v, t) value

• Perturb u and v ±8 pixels, time ±.01.

• Both are symmetric, Random-walk Metropolis



Motion Blur – Result

• Left: Distribution RT, stratified sampling

• Right: Metropolis sampling

• Same total number of samples



Motion Blur – Parameter Studies

• Left: ±80 pixels, ±.5 time. Many rejections.

• Right: ±0.5 pixels, ±.001 time. Didn’t

explore Ω well.



Exponential Distribution

• Vary the scale of proposed mutations

r = rmax e− log(rmax/rmin)ξ, θ = 2πξ

(du, dv) = (r sin θ, r cos θ)
dt = tmax e− log(tmax/tmin)ξ

• Will reject when too big, still try wide variety



Exponential distribution results



Light Transport

• Image contribution function was key

• f(x) over infinite space of paths

• State-space is light-carrying paths through the

scene–from light source to sensor

• Robustness is particularly nice–solve difficult

transport problems efficiently

• Few specialized parameters to set



Light Transport – Setting

• Samples x from Ω are sequences v0v1 . . . vk,

k ≥ 1, of vertices on scene surfaces

x� 0

x� 1

x� 2

x3

• f(x) is the product of emitted light, BRDF

values, cosines, etc.



Light Transport – Strategy

• Explore the infinite-dimensional path space

• Metropolis’s natural focus on areas of high

contribution makes it efficient

• New issues:

– Stratifying over pixels

– Perceptual issues

– Spectral issues

– Direct lighting



MLT Pseudocode
Legend:
z sampling state (light path)
I(z) “scalar contribution function” 

(i.e target function for Metropolis 
mutations, was f(z) earlier)

F(z) integrand (was h(z)f(z) earlier)



Bidirectional Mutation

• Delete a subpath from the current path

• Generate a new one

• Connect things with shadow rays

v0

v� 1

v2

v� 3

v4
v5

v� 6

v0

v� 1

v� 5

v� 6

v0

v� 1

v2'

v3'

v4'

v5'

• If occluded, then just reject



Bidirectional Mutation

• Very flexible path re-use

• Ensures ergodicity–may discard the entire path

• Inefficient when a very small part of path

space is important

• Transition densities are tricky: need to

consider all possible ways of sampling the path



Caustic Perturbation

• Caustic path: one more more specular surface

hits before diffuse, eye

specular
non-specular

• Slightly shift outgoing direction from light

source, regenerate path



Lens Perturbation

• Similarly perturb outgoing ray from camera

• Keeps image samples from clumping together



Why It Works Well

• Path Reuse

– Efficiency–paths are built from pieces of old

ones

– (Could be used in stuff like path tracing...)

• Local Exploration

– Given important path, incrementally sample

close to it in Ω
– When f is small over much of Ω, this is

extra helpful



MLT in Primary Sample Space

• [Kelement et al. 2002]
• Light path is uniquely determined by the 

random numbers used to generate it.



MLT in Primary Sample Space

• Formulate MLT as an integration problem in 
the space of uniformly distributed random 
numbers (the “primary space”)

• New integrand:

• New scalar contrib. function:



MLT in Primary Sample Space

• Mutations in primary space
• Small steps

– Perturb all the ui’s using exponential distribution

• Large steps
– Regenerate path from scratch

• Ergodicity, symmetry (no need to evaluate T )



(a) Bidirectional path tracing with 40 samples per pixel.

Image credit: Eric Veach



(b) Metropolis light transport with an average of 250 mutations per pixel [the same 
computation time as (a)].

Image credit: Eric Veach



(a) Path tracing with 210 samples per pixel.

Image credit: Eric Veach



(b) Metropolis light transport with an average of 100 mutations per pixel [the 
same computation time as (a)].

Image credit: Eric Veach
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Image  credit: Toshiya Hachisuka
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Image  credit: Toshiya Hachisuka



Other applications of Metropolis 
sampling in Rendering

• Segovia et al. 2007
Metropolis Instant Radiosity

• Ghosh & Heidrich 2006
Metropolis sampling of environment maps

• Metropolis photon sampling
– Fan et al. 2005
– Hachisuka and Jensen 2011



Fan et al. 2005



Hachisuka and Jensen 2011

• Simplifying trick:  
Target function is the binary photon visibility V(x)



Hachisuka and Jensen 2011

• Other important trick: Adaptive mutation size
– Adapt mutation size to the number of accepted 

mutations



Hachisuka and Jensen 2011



Hachisuka and Jensen 2011



Conclusion

• A very different way of thinking about

integration

• Robustness is highly attractive

• Implementation can be tricky
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